

THANUSRI AENUGULA

 <https://www.linkedin.com/in/thanusria/> <https://github.com/thanusri1601>
 thanusri1601@gmail.com +1 9403641654

Education

Texas A&M University, College Station, Texas <i>Master of Science in Data Science</i>	Aug 2025 - Dec 2026
Courses: Data Mining, Statistics, Mathematics for ML, Machine Learning, Deep Learning, Reinforcement Learning	
Sri Sivasubramaniya Nadar College of Engineering, India <i>Bachelor of Engineering in Electrical and Electronics Engineering</i>	July 2021 - June 2025 <i>CGPA: 8.72/10</i>
Courses: Data Structures, Probability and Statistics, Introduction to Data Science, Machine Learning, Artificial Intelligence	
The University of Texas at Austin – McCombs School of Business (Remote) <i>Post Graduate Program in Data Science and Business Analytics – Professional Certification</i>	Aug 2023 - Aug 2024 <i>CGPA: 3.75/4</i>
Courses: SQL, Predictive Modeling, Data Visualization, Time Series Forecasting, Marketing and Retail Analytics, Financial and Risk Analytics	

Technical Skills

Languages	Python, C++, SQL, HTML, CSS, JavaScript
Tools	PowerBI, Tableau, Git, Docker, VSCode, Azure DataBricks, Azure Machine Learning
Libraries	TensorFlow, Pandas, Numpy, PyTorch, PySpark, Hugging Face
Soft Skills	Time Management, Leadership, Team Work, Problem Solving, Analytical Thinking

Experience

Daimler India Commercial Vehicles (BharatBenz) Research & Development Intern	Jan 2025 - Jun 2025
Worked on two projects with the Data Driven Engineering team, building machine learning-based tools for the Functional Testing team as internal clients to streamline vehicle testing processes.	
<ul style="list-style-type: none">Developed a statistical twin for dynamic brake testing systems using historical brake performance data and machine learning models.Achieved an R^2 value of 0.94 for Mean Fully Developed Deceleration and 0.93 for Stopping Distance prediction.Delivered a product that enabled the Functional Testing team to optimize and pre-screen vehicle performance, reducing testing time by 80%.Analyzed telematics and Dealer Management Service (DMS) data to develop pipelines for real-time monitoring, enhancing the driving patterns analysis, and fleet optimization using Azure Databricks.	
Shrimitha Energy Solutions Private Limited Data Science Intern	Sept 2024 - Nov 2024
<ul style="list-style-type: none">Developed hybrid models to predict the Remaining Useful Life and State of Charge of batteries and achieved an R^2 value of 0.97 using CNN-LSTM-XGB model.Analyzed over 38+ batteries, reducing failure prediction time by 25%, enhancing operational decision making.Delivered the models for the company, enabling battery performance monitoring and maintenance planning.	

Research and Projects

Predictive Maintenance of Wind Turbine Systems using AI — Research Project [GitHub]	Aug 2024 - Apr 2025
<ul style="list-style-type: none">Submitted a paper to the Elsevier Engineering Applications of AI journal that presented hybrid methods to predict the Remaining Useful Life of wind turbine systems.Designed an interactive PowerBI dashboard to effectively monitor and visualize data fluctuations and changes to act on changes more efficiently.Built different hybrid models to predict the Remaining Useful Life of the wind turbine systems out of which CNN-LSTM-GRU performed really well with a coefficient of determination of 0.91.	
Behavioural Churn Modeling [GitHub]	
<ul style="list-style-type: none">Increased churn prediction accuracy to 98% using the Gradient Boosting model, enabled targeted retention strategies, and lessened churn by 15%Improved precision of churn prediction, minimized false positives, and optimized spend on retentions.Validated model consistency with cross-validation and got less than 10% difference between training and testing metrics.	Jul 2024 - Aug 2024
Sales Analysis and Forecasting Behavioural Patterns [GitHub]	
<ul style="list-style-type: none">Analyzed wine sales data through data cleaning, visualization techniques, and time series decomposition, and improved forecasting accuracy by 20%.Undertook a comparative analysis of 7 forecasting techniques; Triple Exponential Smoothing performed best with a lower RMSE value of 317.43.	Mar 2024 – Apr 2024

Honors, Leadership and Community Involvement

- Achieved first position in the **inter-college regional-level** singing competition and represented at the **national-level**.
- Led the analytics team as **Event Analytics Head** for Invente, the annual technical fest at SSN College.
- Serving as **Coordinator** of the Aggie Data Science Club, organizing hands-on projects, workshops, and mentorship programs.